88 research outputs found

    Asymptotic genealogy of a critical branching process

    Full text link
    Consider a continuous-time binary branching process conditioned to have population size n at some time t, and with a chance p for recording each extinct individual in the process. Within the family tree of this process, we consider the smallest subtree containing the genealogy of the extant individuals together with the genealogy of the recorded extinct individuals. We introduce a novel representation of such subtrees in terms of a point-process, and provide asymptotic results on the distribution of this point-process as the number of extant individuals increases. We motivate the study within the scope of a coherent analysis for an a priori model for macroevolution.Comment: 30 page

    The coalescent point process of branching trees

    Full text link
    We define a doubly infinite, monotone labeling of Bienayme-Galton-Watson (BGW) genealogies. The genealogy of the current generation backwards in time is uniquely determined by the coalescent point process (Ai;iβ‰₯1)(A_i; i\ge 1), where AiA_i is the coalescence time between individuals i and i+1. There is a Markov process of point measures (Bi;iβ‰₯1)(B_i; i\ge 1) keeping track of more ancestral relationships, such that AiA_i is also the first point mass of BiB_i. This process of point measures is also closely related to an inhomogeneous spine decomposition of the lineage of the first surviving particle in generation h in a planar BGW tree conditioned to survive h generations. The decomposition involves a point measure ρ\rho storing the number of subtrees on the right-hand side of the spine. Under appropriate conditions, we prove convergence of this point measure to a point measure on R+\mathbb{R}_+ associated with the limiting continuous-state branching (CSB) process. We prove the associated invariance principle for the coalescent point process, after we discretize the limiting CSB population by considering only points with coalescence times greater than Ξ΅\varepsilon.Comment: Published in at http://dx.doi.org/10.1214/11-AAP820 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A critical branching process model for biodiversity

    Full text link
    Motivated as a null model for comparison with data, we study the following model for a phylogenetic tree on nn extant species. The origin of the clade is a random time in the past, whose (improper) distribution is uniform on (0,∞)(0,\infty). After that origin, the process of extinctions and speciations is a continuous-time critical branching process of constant rate, conditioned on having the prescribed number nn of species at the present time. We study various mathematical properties of this model as nβ†’βˆžn \to \infty limits: time of origin and of most recent common ancestor; pattern of divergence times within lineage trees; time series of numbers of species; number of extinct species in total, or ancestral to extant species; and "local" structure of the tree itself. We emphasize several mathematical techniques: associating walks with trees, a point process representation of lineage trees, and Brownian limits.Comment: 31 pages, 7 figure

    Genealogy of catalytic branching models

    Full text link
    We consider catalytic branching populations. They consist of a catalyst population evolving according to a critical binary branching process in continuous time with a constant branching rate and a reactant population with a branching rate proportional to the number of catalyst individuals alive. The reactant forms a process in random medium. We describe asymptotically the genealogy of catalytic branching populations coded as the induced forest of R\mathbb{R}-trees using the many individuals--rapid branching continuum limit. The limiting continuum genealogical forests are then studied in detail from both the quenched and annealed points of view. The result is obtained by constructing a contour process and analyzing the appropriately rescaled version and its limit. The genealogy of the limiting forest is described by a point process. We compare geometric properties and statistics of the reactant limit forest with those of the "classical" forest.Comment: Published in at http://dx.doi.org/10.1214/08-AAP574 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore